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Multifractal analysis of the metal-insulator transition in the three-dimensional Anderson model.
II. Symmetry relation under ensemble averaging
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We study the multifractal analysis (MFA) of electronic wave functions at the localization-delocalization
transition in the three-dimensional Anderson model for very large system sizes up to 240°. The singularity
spectrum f(a) is numerically obtained using the ensemble average of the scaling law for the generalized
inverse participation ratios P,, employing box-size and system-size scaling. The validity of a recently reported
symmetry law [Mirlin ef al., Phys. Rev. Lett. 97, 046803 (2006)] for the multifractal spectrum is carefully
analyzed at the metal-insulator transition. The results are compared to those obtained using different ap-
proaches, in particular the typical average of the scaling law. System-size scaling with ensemble average
appears as the most adequate method to carry out the numerical MFA.
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I. INTRODUCTION

The multifractal analysis (MFA) of electronic wave func-
tions || at the localization-delocalization transition has
been a subject of intense numerical study for the last 20
years.!”!> The MFA of the critical |¢]*> in a system with
volume L? is based on the scaling of the generalized inverse
participation ratios (gIPR) P () =Z,u{(l) defined from the
integrated measure g, (1)=2,|;|* in all N, boxes with linear
size [ covering the system. At criticality the scaling law
P,(N)x A7) is expected to hold in a certain range of values
for A\=1/L. The well-known singularity spectrum f(«) is de-
fined from the 7(q) exponents via a Legendre transformation
fla,)=qa,~(q) and a,=7'(¢). The physical meaning of the
f(a@) is as follows. It is the fractal dimension of the set of
points where the wave-function intensity obeys |i|>~ L%
that is, in a discrete system the number N, of such points
scales as L/,

Recently, the report of a remarkable analytical result con-
cerning the existence of an exact-symmetry relation in the
f(a@) (Ref. 16) has required a profound revision of all the
techniques involved in the numerical MFA. The reported
symmetry law'® requires A,=A;_, in terms of the anomalous
scaling exponents, which can be obtained by A,=1(q)-d(q
—1). The symmetry can also be written as

a,+a_,=2d, (1)
or in terms of the singularity spectrum itself as
5f(a) = [f(2d - @) - [fl@) +d—a]|=0.  (2)

At the metal-insulator transition (MIT) the f(«) is a convex
function of @=0 with a maximum at ay=d where f(a;)
=d. The values of f(a) are not restricted to be positive.!”!®
The symmetry (2) implies that the upper bound is &= 2d and
that the values of f(a) for a«<<d can be mapped to the values
for «>d and vice versa. A pictorial sketch of the expected
properties of f(«) is shown in Fig. 1.

So far the symmetry has been numerically found in dif-
ferent critical models below three dimensions.!®!? In a pre-
vious work the role of the symmetry law in the MIT for the
3D Anderson model was thoroughly studied by the authors
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using the typical average of the scaling law for the gIPR.?
This has been usually regarded as the preferred way to per-
form MFA. In this work we study the alternative ensemble
average of the scaling law and how it performs concerning
the symmetry relation. This latter method manifests itself as
the most adequate technique to carry out the numerical MFA,
leading to an even better agreement with Eq. (1).

II. MFA USING ENSEMBLE AVERAGE

The numerical MFA is based on an averaged form of the
scaling law for the gIPR in the limit A=1[/L— 0, where the
contributions from all finite-size critical wave functions are
properly taken into account. The scaling law for the en-
semble average involves the arithmetic average of P, over all
realizations of disorder,
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FIG. 1. Pictorial representation of the general features of the
multifractal spectrum at criticality. The dotted black areas highlight
forbidden regions for f(«). The gray shaded area can be connected
to the white area through the symmetry relations (1) and (2) and
vice versa. These two regions are determined by different wave-
function amplitudes: |¢4;|*>>L™¢ (white) and |¢;|> <L~ (light gray).
The properties of the spectrum at the points corresponding to ¢
=1/2 and the symmetry-related g=0 and 1 are explicitly included:
Aeag)=d, flay)=ay, f'())=1, and fla)p=d)=d=A ).
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(P, \T@, (3)

where (---) denotes the arithmetic average over all states.
Thus the definition of the scaling exponents is
In(P,(\))

™(g) = lim——~L—, (4)
A—0 In A\

and the corresponding definitions of « and f(«) can be writ-
ten in a compact form as

Ny

i 1 ~ ~
o™ =lim——\ > 8(g.M)In §(1.)) ), (5a)
4 )\—»()ln A k=1

Ny

1 - -
fgns Ef(a;ns) = hm_ E 5k(q’ )\)ln 5k(q,)\) . (Sb)
}\HO]H )\ k=1

Here Sk(q,)\)E,LLZ()\)/<Pq()\)>, which is not normalized for
every wave function but after the average over all of them.
Let us emphasize that although Eq. (5) is handy analytically,
it is much more useful for numerical purposes to develop
them in longer expressions with simpler factors (see Sec. V).

In contradistinction to the typical average?® which is de-
termined by the behavior of representative wave functions,
the ensemble average weighs the contribution of all wave
functions equally, including rare (and hence not representa-
tive) realizations of the disorder. These rare events are indeed
responsible for the negative values of f(a). Therefore it is
very important to take them into account by doing the en-
semble average if one wants to have a complete picture of
the singularity spectrum. We emphasize that in the thermo-
dynamic limit both averaging processes must provide the
same singularity spectrum in the positive region. The relation
between typical and ensemble averaging has been previously
commented in the literature.?!??

III. DATA FOR THE 3D ANDERSON MODEL AT
CRITICALITY

The standard tight-binding Anderson model>® with uni-

form diagonal disorder of mean zero and width W, and
nearest-neighbor hopping is considered in a cubic lattice of
volume L?. The bandwidth is six at zero disorder. We use the
critical disorder at W,.=16.5 and for every disorder realiza-
tion the L X L? Hamiltonian is diagonalized with periodic
boundary conditions to obtain the five eigenstates closest to
the band center E=0.2* The whole set of data used for the
analysis, including system sizes and number of samples for
each, is described in detail in Table I. We refer the reader to
Ref. 20 for more technical details and to Refs. 23 and 25 for
recent comprehensive reviews of the subject.

IV. SCALING WITH BOX SIZE

The easiest way to approach the thermodynamic limit in
the scaling law (3) is considering the limit /— 0 for the box
size [. Using this method, we only need realizations for a
system with a fixed linear size L that is partitioned equally
into an integer number of smaller boxes of linear size /. This
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TABLE I. Linear system sizes L, volume V, number of eigen-
states, and total wave-function values ; used for the numerical
MFA.

L V=L’ Samples ;

20 8% 103 24 995 2% 108
30 9% 103 25025 6.8 X 108
40 6.4%10% 25025 1.6x10°
50 1.3X10° 25030 3.1Xx10°
60 22X10° 25030 54%10°
70 3.4X%10° 24 950 8.6 X 10°
80 5.1%10° 25003 1.3x 1010
90 7.3%10° 25005 1.8 1010
100 1X10° 25030 2.5% 1010
140 2.7%10° 105 29x% 108
160 4.1x10° 125 5.1 108
180 5.8 10° 100 5.8 108
200 8% 10° 100 8108
210 9.3 10° 105 9.7x 108
240 1.4%x107 95 1.3%10°

is the same partitioning scheme that we have previously con-
sidered when studying the typical average of the scaling
law.?0

For each state, the gth moment of the box probability
w{(l) is evaluated in each box and P, is obtained by sum-
ming the contribution from all boxes. The scaling behavior
(3) is then obtained for different values of /. In all the com-
putations the values of the box size ranges in the interval
10=I=L/2.

A. General features of f*"(a)

The singularity spectrum for L=100 having 2.5X10*
states is shown in Fig. 2 with its symmetry-transformed
spectrum. The first thing to notice is that the /() spectrum
attains negative values in the region of small «, correspond-
ing to high values of the wave-function amplitudes. The
negative region of the multifractal spectrum describes the
scaling of certain sets of unusual values of |¢/7| which only
occur for rare critical functions. Let us recall that f(a) <0 is
the fractal dimension of the set of points where |¢7|~L%,
which implies that the number of such points decreases with
the system size as L@ These negative dimensions are
then determined by events whose probability of occurrence
decreases with the system size. The negative part of the spec-
trum provides valuable information about the distribution of
wave-function values for a finite-size system near the critical
point and is needed to give a complete characterization of the
multifractal nature of the critical states at the metal-insulator
transition. At the left-half part of f*™(«) in Fig. 2, we ob-
serve its termination in the negative region toward a— 0.
The values of « and f(«) are obtained from the slopes of the
linear fit of Eq. (5) via a general x> minimization taking into
account the statistical uncertainty of the averaged right-hand
side terms. The behavior of the linear correlation coefficient
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FIG. 2. (Color online) Singularity spectrum (black line) ob-
tained using box-size scaling of the ensemble average of P, for
system size L=100 with 2.5 X 10" states. The error bars are equal to
one standard deviation. The corresponding symmetry-transformed
spectrum f(2d—a)=f(a)+d—«a is shown in black dashed line. The
values for the linear correlation coefficient 2 and quality-of-fit pa-
rameter Q for both o™ and f*"S(«) are shown in the bottom shaded
panel.

r? and the quality-of-fit parameter Q for the different parts of
the spectrum (corresponding to different values of the mo-
ments ¢) is shown in the bottom panel of Fig. 2. The r? value
is very near to one for almost all @ which shows the near
perfect linear behavior of the data points. The parameter Q
gives an estimation on how reliable the fits are according to
the error bars of the points involved in the fits. The unusual
decrease in Q observed around «=3, corresponding to g
~0.5, in Fig. 2 is due to an underestimation of the standard
deviations of the points in the fits, since the linear-correlation
coefficient is still very high in this region. It can also be seen
that the uncertainties for the points of f*(a) tend to grow
when approaching the ends of the spectrum. This effect is
more significant when doing ensemble average, but it should
be naturally expected since the higher the value of |g| is the
more the numerical inaccuracies of |¢;|?> are enhanced, espe-
cially in the region of negative g, corresponding to the right
branch of the spectrum. The mass exponents 7"%(g) and the
fits of Eq. (4) are shown in Fig. 3, along with the generalized
fractal dimensions D= 7"*(q)/(¢— 1) corresponding to the
spectrum in Fig. 2.

B. Effects of system size and disorder realizations on f*"(a)

In Fig. 4 we study the effects of the number of states and
disorder realizations on f*"(a) for L=60 having 2.5X 10?
and 2.5 X 10* states. Considering two particular ¢ values at
each tail, when the number of samples is increased we see
that the domain of f*"(«) is enlarged. The point correspond-
ing to a given g appears later in the spectrum and thus the
left end reaches more negative values with more states [Fig.
4(a)]. The same stretching effect can also be observed for the
right branch in Fig. 4(b). Additionally the reliability of the
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FIG. 3. (a) Mass exponents 7"(¢) and (b) generalized fractal
dimensions D" corresponding to the singularity spectrum in Fig. 2.
Dashed lines in upper panels highlight the values Dy=d and 7=
—d. Symbols highlight integer values of g. Panel (c): linear fits of
Eq. (4). Only fits for integer values of g ranging from ¢g=-5 (top) to
=9 (bottom) are shown. The value of 7"(g) is given by the slope
of the fits. Data points for ¢ # 0 have been properly shifted verti-
cally for optimal visualization. Data for ¢g=0 highlighted with filled
symbols. Standard deviations are contained within symbol size in
all panels.

data points in the singularity spectrum is significantly im-
proved as shown by the huge decrease in their uncertainties.
These effects prove the strong dependence of the ensemble
averaging on the number of samples taken.

The effect of the system size on the shape of the singu-
larity spectrum is presented in Fig. 5. Here we consider sys-
tem sizes L=60 and 100 each having 2.5 X 10* number of
states. Once again, we take two particular ¢ values at each

\ (b)

. ,

-1.5- I

FIG. 4. (Color online) (a) Left and (b) right branches of the
singularity spectrum obtained using box-size scaling and ensemble
average for system size L=60 with 2.5X 10% (gray) and 2.5X 10*
(black) number of states. The filled symbols denote (a) g=5.0 and
(b) g=—1.0. The empty symbols mark (a) ¢g=7.0 and (b) g=-1.5.
The error bars are equal to one standard deviation.
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FIG. 5. (Color online) (a) Left and (b) right branches of the
singularity spectrum obtained using box-size scaling and ensemble
average for system sizes L=60 (gray) and L=100 (black) where
each has 2.5 X 10* states. The filled symbols denote (a) g=6.0 and
(b) g=-1.0. The empty symbols mark (a) g=10.0 and (b) g=—1.5.
The error bars indicate one standard deviation.

tail as shown in panels (a) and (b) and observe how their
locations change when the system size is varied. When we
consider a bigger system size with the same number of real-
izations, the domain of f*(a) tends to decrease, and so for
the same g range we see less negative values at the left end
[Fig. 5(a)]. In other words to be able to observe the same
extent of the negative /() values of L=60, one must av-
erage over more states when a bigger system size such as
L=100 is considered. The same shrinking effect also occurs
in the right branch of the spectrum. This unexpected behav-
ior is due to the nature of the ensemble averaging process
that is strongly determined by the contribution of rare events
which are less likely to happen for larger systems. This im-
portant effect will be discussed in more detail in Sec. V.

C. Symmetry relation

In the upper panel of Fig. 6 we give a numerical evalua-
tion of the symmetry law. An approximate estimation of the
symmetry law is also shown in the lower panel using Eq.
(2),%° which measures the distance between the spectrum and
its symmetry-transformed counterpart. We compare data for
L=240 (95 states), L=60 (2.5 10* states), and L=100
(2.5 X 10* states). Our results show that in general the closest
agreement to the symmetry in the singularity spectrum is
achieved for the cases with the highest number of disorder
realizations, in particular for L=100 [f(«) shown in Fig. 2].
Although around the symmetry point g=1/2 the spectrum
obtained using the largest system size available, L=240 with
95 states, tends to behave slightly better (inset in upper panel
of Fig. 2); the tendency is inverted when looking at a broader
region of g values. This result is a clear manifestation of how
important the number of disorder realizations is when doing
ensemble average.

It is therefore clear that the more realizations the better
the symmetry is. Obviously a bigger system size helps re-
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FIG. 6. (Color online) Measure of degree of symmetry of the
multifractal spectrum obtained from ensemble average doing scal-
ing with box size. The upper panel shows the numerical evaluation
of the symmetry law as a function of ¢ for system sizes L=240
(dashed black) with 95 states, L=60 (gray) with 2.5X 10* states,
and L=100 (solid black) for 2.5 10* states. For each curve only
one error bar in every three is shown for clarity. The bottom panel
shows &f(a) versus a. There is no correspondence between the
abscissa axes of the upper and lower plots. For clarity, two values of
q for the black line are explicitly written.

duce finite-size effects, but we have shown that increasing
system size also implies generating more states in order to
obtain the same extent of f*™(«). Thus from a numerical
viewpoint an agreement between system size and disorder
realizations must be found to optimize the use of box-size
scaling and ensemble averaging.

V. SCALING WITH SYSTEM SIZE

The scaling with the system size may be the most ad-
equate way to describe the thermodynamic limit of the scal-
ing law for the gIPR (3) (L— =); however, the numerical
eigenstate problem is highly demanding for very large 3D
systems.”0

The formulae (4) and (5) for the singularity spectrum are
now affected by the substitution: lim,_,o=-lim;_,... As for
the typical average,?’ the box size [ which determines the
integrated probability distribution is set to /=1 for non-
negative moments (¢=0) and to a value [>1 (usually [=5)
for ¢<0, in order to minimize the errors and the uncertain-
ties in the right branch of f(«). For the case [=1 the formulae
to obtain the spectrum reduce to

<E |'r’/i|2qln|¢i|2>

<§ |¢,»|2q> |

<E |ifIn] gy
: —1n<2 Iw,-lz‘f>. (6b)
<E |wj|2q> ,.
J

-a™InL~

(6a)

— I L~
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FIG. 7. (Color online) Singularity spectrum obtained from en-
semble averaging. System sizes from L=20 to 100 have been con-
sidered with ~2.5X 10* different wave functions for each system
size as shown in Table I. The dashed line is the symmetry-
transformed spectrum. The values of g range from g=-2 to 7 with
a step of 0.1 (I=1 for ¢=0 and [=5 for ¢<<0). Symbols highlight
the values corresponding to integer g. Error bars in gray are stan-
dard deviations. The lower panel shows the linear correlation coef-
ficient (r?) and the quality-of-fit parameter (Q) of the linear fits to
obtain the values for a and f(«).

We note the clear difference between the ensemble aver-
age (6) and the typical average techniques [Egs. (14) in Ref.
20]. The values of @™ and f" are obtained from the slopes
of the linear fits of the averaged terms in Eq. (5) (¢=0) and
Eq. (6) (¢<<0) versus In L, for different values of the system

size L.

A. General features of f"(a)

The multifractal spectrum obtained from the ensemble av-
erage is shown in Fig. 7, where we have considered nine
different linear system sizes ranging from L=20 to 100 for
the scaling after averaging over ~2.5X 10* states for each
size as shown in Table I. The branch of negative values char-
acterizing f®(a) can be clearly seen. The absence of an
infinite slope in the spectrum when crossing the abscissa axis
must also be emphasized. As discussed in Ref. 20 this con-
firms the fact that the divergence of the slope at the termina-
tion points observed when doing the typical average f%P(«)
is purely a finite-size effect, since both averages must pro-
vide the same result for f(«) =0 in the thermodynamic limit.
This is also supported by the systematic shift of the left end
of fY?(a) to smaller values of a whenever more states or
larger system sizes are considered.”’ The error bars for the
values of f*(a) are considerably larger than the ones ob-
tained for fP(a) using the same system sizes and disorder
realizations [Fig. 7 in Ref. 20]. This is of course a conse-
quence of having larger errors for the points used in the
linear fits shown in Fig. 8. These higher uncertainties are due
to the nature of the average itself and the probability distri-
bution function for the generalized IPR. The probability den-

PHYSICAL REVIEW B 78, 195107 (2008)

— ) 20

ens
q
ens
q

/
i

Averaged Contribution for f

e}
[
T T
. |
T
'
%)
(=}

@

Averaged Contribution for o
1S

| %

301 [ | N B
20 50 100 20 50 100
L L

FIG. 8. Linear fits of Eq. (5) for aZ"S values (left) and ff]"s values
(right) of the singularity spectrum in Fig. 7. Only fits for integers
values of ¢ ranging from ¢=7 (top) to g=-2 (bottom) are shown.
The values of o™ and f,™ are given by the slopes of the fits. Data
points for ¢ # 0 have been properly shifted vertically to ensure op-
timal visualization. Data for g=0 highlighted with filled symbols.
When not shown, standard deviations are contained within symbol
size.

sity for P, is an asymmetric function around its maximum
with long tails,2"?” resembling a log-normal distribution. The
calculation of the arithmetic average of P, involved in the
ensemble average is therefore much more heavily based on
the number of disorder realizations than the determination of
the geometric mean used for the typical average and thus
larger uncertainties and slower convergence must be ex-
pected for the ensemble-averaged situation with the same
number of wave functions. Regarding the errors in the values
of f(a), it is remarkable how their magnitude grows, for
high values of |g|, apparently at the same rate as the spec-
trum deviates from the symmetry-transformed curve (dashed
line in Fig. 7). This suggests that it might be possible to
observe almost a perfect agreement with the symmetry law,
using this small range of system sizes for the scaling, if the
number of realizations were large enough.

B. Effects of the number of disorder realizations on ()

The effect of increasing the number of states in the en-
semble average can be seen in Fig. 9, for scaling with L
€[20,100]. A reduction in the standard deviations must be
expected whenever more realizations are taken into account.
To make this clear we have considered two situations: aver-
aging over 1 X 10% states or over ~2.5X 10* states for each
size. In Fig. 9 the points with the specified vertical uncer-
tainty appear later (for higher values of ¢) on the left and
right branches of the spectrum when we increase the number
of states in the average. This clearly means that for a fixed
position on the f*"(a) curve, the uncertainty shrinks when
more states are included. There is however another signifi-
cant effect that must be emphasized. In Figs. 9(a) and 9(b),
the spectrum obtained for values of g higher than the ones
indicated is represented by dashed lines. For the average in-
cluding only 1 X 10* samples for each size, the values of the
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FIG. 9. (Color online) (a) Left and (b) right branches of the
singularity spectrum obtained from ensemble averaging scaling
with system sizes from L=20 to 100 and same number of states for
each size: 1X10% (gray) and ~2.5X 10* (black). The values of ¢
range from g=—10 to 10 with a step of 0.1 (/=1 for g=0 and [
=35 for [<<0). The vertical standard deviation for the points marked
with filled symbols is always oy=1.0 and only the uncertainty for a
has been included, for clarity. The g value corresponding to each of
the symbols is indicated. Dashed lines represent the spectrum in
each case for higher values of ¢. (c) Inset shows the change in the
value f(=6) for the cases: 5X 103 states (gray) for each size and
~2.5% 10* states (black) for each size.

spectrum for high |g| are completely absurd and f(«) be-
haves in an unexpected way, showing “kinks” and bumps as
a consequence of a loss of precision in the fits caused by very
large uncertainties. This implies that by increasing the num-
ber of states in the ensemble average not only the standard
deviations are reduced for each point, but the domain of
accessible values for f(a) is also enlarged, e.g., for more
wave functions the spectrum reaches more negative values
[Fig. 9(a)]. This is in marked contrast to the typical average?
for which one obtains almost the same range of f(a) inde-
pendently of the number of states considered. When doing
the ensemble average, the appearance of these “kinks” in the
spectrum, either for system-size or box-size scaling where
they have also been observed, is always the fingerprint of a
lack of sampling of the distributions, i.e., not enough disor-
der realizations.

In the inset (¢) of Fig. 9, we have also illustrated the
behavior of the value f(a=6), at the upper boundary required
by the symmetry relation, when the number of states is
changed from 5X10° to ~2.5X 10* for each system size.
The spectrum tends to be in better agreement with the upper
boundary required by Eq. (2) when the number of disorder
realizations increases.

C. Effects of the range of system sizes on f*"(a)

In order to study the effects of the system size, we show
in Fig. 10 the singularity spectrum obtained doing scaling in
different intervals: L €[40,100] and L €[140,240], taking
~100 wave functions for each size in both cases. The fact
that we have only averaged over 100 states for each size
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FIG. 10. (Color online) Singularity spectrum obtained from en-
semble averaging scaling with seven system sizes L € [40,100] and
1X10% states for each size (gray) and six system sizes L
€[140,240] and ~ 10? states for each size (black). The values of ¢
range from ¢g=-10 to 10 with a step of 0.1 (I=1 for g=0 and /
=5 for [<<0). Filled symbols correspond to points with the same
vertical standard deviation (O'f: 1.0; not shown for clarity). Dashed
lines represent the spectrum in each case for values of ¢ higher than
the ones indicated beside their corresponding points. (a) Inset shows
the spectrum for a different set of data: L € [20,60] (gray) and L
€[60,100] (black) with ~2.5X 10* states for each size in both
cases.

makes the standard deviations noticeably large, however, this
does not affect the conclusions qualitatively. When we con-
sider larger system sizes for a fixed number of disorder real-
izations, the region where we can reliably obtain the multi-
fractal spectrum shrinks. Moreover if we go to high enough
values of |g| (highlighted by dashed lines in Fig. 10), it can
be noticed how the wrong behavior of f(«) is enhanced. This
is a very counterintuitive result, since one would expect that
for increasing system sizes, the number of disorder realiza-
tions needed to obtain the spectrum with a given degree of
reliability should decrease proportionally—that is in fact
what happens with the typical averaging.’® However for en-
semble averaging the conclusion is just the opposite: if you
want to improve the spectrum in a given region of the tails
and you consider larger system sizes to reduce finite size
effects, the number of disorder realizations must also be in-
creased. This is due again to the nature of the ensemble
averaging process and the shape of the distributions for the
gIPR. The arithmetic average is heavily based on rare events
which are less likely to appear for bigger systems and so the
number of realizations has to grow with the system size in
order to include the proper amount of rare events. This can
be more clearly understood in the region of negative fractal
dimensions. We know that the number of points in a single
wave function such that |¢/7| ~ L™ where f(@) <0 is L™/(@|
< 1. Therefore to be able to see the region of negative fractal
dimensions we would need a number of states N such that
we can guarantee NL V@I 1, This implies that the number
of disorder realizations must go as N ~ L@ and thus it
increases with the system size. This effect can be observed in
the inset (a) of Fig. 10, where we have compared scaling
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FIG. 11. (Color online) Measure of degree of symmetry of the
multifractal spectrum obtained from ensemble average doing scal-
ing with system size. The upper panel shows the numerical evalu-
ation of the symmetry law as a function of g. Dashed black: seven
system sizes from L=40 to 100 and 1 X 10? states for each. Gray:
six system sizes from L= 140 to 240 and ~ 107 states for each. Solid
black: nine system sizes from L=20 to 100 and ~2.5 X 10* states
for each. The bottom panel shows Jf(a) versus a. There is no
correspondence between the abscissa axes of the upper and lower
plots. For clarity, two values of ¢ for the black line are explicitly
written.

with sizes L e[20,60] and L e[60,100] with ~2.5X 10*
states for each size in both cases. For higher sizes and the
same number of states, we are not able to see the same re-
gion of negative fractal dimensions. Aside from this effect, it
must nevertheless be emphasized that when we consider
larger system sizes, the right branch of the spectrum tends to
find a better agreement with the upper boundary required by
the symmetry law.

D. Symmetry relation

To discuss the fulfillment of the symmetry using ensemble
average and scaling with system size, let us look at Fig. 11
where the numerical evaluation of the symmetry law (1) is
shown for different ranges of system sizes and disorder real-
izations. The best result, according to the symmetry, corre-
sponds undoubtedly to the case with the highest number of
disorder realizations ~2.5 X 10* for which the scaling analy-
sis involves sizes from L=20 to 100. The difference is re-
markable between the situation corresponding to (i) L
€ [40,100] averaging over 100 states only, where the sym-
metry is hardly satisfied at all, and (ii) the best case where
the development of the plateau for a,+a;_,—2d around g
=0.5 can be seen very clearly. The spectrum obtained for L
€[120,240] with ~100 states for each size also deviates
noticeably from the symmetry. These differences can also be
seen in the bottom panel of Fig. 11 where the degree of
symmetry is estimated by f(«a).

For the ensemble average going to very large system sizes
is not the best strategy unless one can generate an increasing
number of states. It must be clear that of course finite-size
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FIG. 12. (Color online) Comparison of degree of symmetry for
spectra obtained using: box-size scaling typical average [BS-TYP]
(dashed gray), box-size scaling ensemble average [BS-ENS]
(dashed black), system-size scaling typical average [SS-TYP] (solid
gray), and system-size scaling ensemble average [SS-ENS] (solid
black). The best spectrum for each case has been considered: [BS-
TYP] L=240 (95 states), [BS-ENS], L=100 (2.5 X 10* states), [SS-
TYP] L €[140,240] (~10? states for each size), and [SS-ENS] L
e[20,100] (~2.5 X 10* states for each size). Data for typical aver-
age extracted from Ref. 20. The upper panel shows the numerical
evaluation of the symmetry law as a function of g. The bottom
panel shows Jf(a) versus a. There is no correspondence between
the abscissa axes of the upper and lower plots.

effects will be reduced using large sizes but the number of
wave functions used for the average has to grow with the
system size considered. For a given range of system sizes,
increasing the number of states improves the reliability of
data, enlarges the accessible domain of f(a)—especially in
the region of negative dimensions—and improves the sym-
metry.

VI. COMPARISON OF DIFFERENT SCALING AND
AVERAGING APPROACHES

Taking the symmetry relation (1) as a measure of the
quality of the numerical MFA, let us compare the results of
the different scaling and averaging techniques. In Fig. 12 we
show the best analyses obtained from box-size and system-
size scaling using typical and ensemble averages in both
cases. Data corresponding to the typical average have been
extracted from Ref. 20. The performance of the system-size
scaling technique (solid lines) is clearly much better than
box-size scaling (dashed lines). This is not a very surprising
result, since one expects finite-size effects to be more en-
hanced in box-size scaling. For each of the scaling proce-
dures the ensemble average (black) is also better than the
typical average (gray). This may not be so intuitive, since
due to the nature of the distribution functions for P,,*"*" one
might expect the typical average to be a better choice. How-
ever it turns out that the ensemble average does better in
revealing the true behavior in the thermodynamic limit.
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Let us recall the strategies that give the best result for
each of the techniques. For typical average the best symme-
try is achieved using the largest system sizes available, either
for box-size or system-size scaling, although the number of
realizations is not the highest.?> On the other hand, using
ensemble average, the safest choice is to consider smaller
system sizes for which a very large number of disorder real-
izations can be obtained.

VII. CONCLUSIONS AND OUTLOOK

In this work we have studied the symmetry law (1) for the
multifractal spectrum of the electronic states at the metal-
insulator transition in the 3D Anderson model, using the
ensemble-averaged scaling law of the gIPR (3). A detailed
analysis has revealed how the MFA is affected by system
size and number of samples. System-size scaling with en-
semble average has manifested itself as the most adequate
method to perform numerical MFA, in contrast to box-size
scaling and typical average which had been mainly the
method of choice in previous studies.>*3 Since the ensemble
average is strongly based on the number of disorder realiza-
tions, from a numerical point of view, the best strategy to
carry out the analysis is to consider a sensible range of sys-
tem sizes for which a very large number of states can be
generated.

All our results suggest that the symmetry law is true in the
thermodynamic limit, since a better agreement is found
whenever a high enough number of disorder realizations and
larger system sizes are considered. The symmetry relation (2)
then provides a powerful tool to obtain a complete picture of
f(a) at criticality, since it would suffice to obtain numerically
the spectrum in the most reliable region ¢ >0 and apply the
symmetry to complete the function for ¢ <0.

The results obtained for f(a) also provide some useful
information about the validity of previous analytical results.
The perturbative analysis in d=2+ € made by Wegner?® led to
the following spectrum:

o— 2
fW(a) =d-— Wﬂ
€
(- ETa-dp158] @)

where {(x) denotes the Riemann zeta function. Remarkably
Wegner’s result obeys the symmetry relation (2) provided the
spectrum is indeed terminated at a=0 and 2d. The first two
terms in Eq. (7) constitute the usual parabolic approximation
(PA). The extra quartic term is an overestimation in 3D (e
=1), as explicitly stated by Wegner, which gives a nonac-
ceptable spectrum. To obtain the correct f(«) at e=1 all the
other terms in the perturbation series are required. Therefore

PHYSICAL REVIEW B 78, 195107 (2008)

1.1~ _

4/4(1-9)
(=]
O
T \N
Y
/
y
/
A/
4
|

L \x \
BS-TYP N
0.8~ ---- BS-ENS S
L SS-TYP |
—— SS-ENS
0.7_1 . | . | . . | . | . [
-1 -0.5 0 0.5 1 1.5 2
q

FIG. 13. (Color online) Reduced anomalous scaling exponents
for the best spectrum obtained using: BS-TYP (dashed gray), BS-
ENS (dashed black), SS-TYP (solid gray), and SS-ENS (solid
black). See caption of Fig. 12 for more details. The horizontal dot-
ted line marks the value corresponding to the parabolic
approximation.

the deviation of the multifractal spectra from the PA must be
naturally expected. The reduced anomalous scaling expo-
nents A,/ g(1-gq) are the most adequate quantities to analyze
nonparabolicity of the f(«),?’ since they are constant for a
strictly parabolic spectrum. In Fig. 13 we show the reduced
anomalous scaling exponents for the best analyses obtained
in this work and previously shown in Fig. 12. The exponents
A,/q(1-g) are also extremely sensitive probes of the sym-
metry relation (1), as all small deviations from A =A,_, are
greatly amplified around the symmetry point. In an ideal case
the reduced anomalous scaling exponents should be symmet-
ric around g=1/2 where their maximum must be located. In
Fig. 13 the method combining system-size scaling and en-
semble average is again confirmed as the numerically most
adequate to perform MFA.

In spite of the large amount of information that the nu-
merical analyses here and in Ref. 20 and the symmetry rela-
tion (1) have provided, the complete picture of the multifrac-
tal spectrum for the MIT in 3D is still elusive. In particular
further research is needed to confirm the possible existence
of termination points?? and whether these happen at negative
values on both sides, since this has important implications
upon the distribution functions of the wave-function ampli-
tudes near the localization-delocalization transition.
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